Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese journal of integrative medicine ; (12): 137-140, 2007.
Article in English | WPRIM | ID: wpr-282425

ABSTRACT

<p><b>OBJECTIVE</b>To explore the protective effect of tanshinone II A on lipopolysaccharide (LPS)-induced lung injury in rats, and possible mechanism.</p><p><b>METHODS</b>LPS (O(111): B4) was used to produce a rat model of acute lung injury. Sprague-Dawley rats were randomly divided into 3 groups (8 in each group): the control group, the model group (ALI group), and the tanshinone II A treatment group. Expression of adhesion molecule CD18 on the surface of polymorphonuclear neutrophil (PMNCD18) in venous white blood cells (WBC), and changes in coagulation-anticoagulant indexes were measured 6 h after injection of LPS or normal saline. Changes in malondialdehyde (MDA) content, wet and dry weight (W/D) ratio and morphometry of pulmonary tissue as well as PMN sequestration in the lung were also measured.</p><p><b>RESULTS</b>(1) When compared with the control group, expression of PMNCD18 and MDA content were enhanced in the ALI group with a hypercoagulable state (all P<0.01) and an increased W/D ratio (P<0.05). Histopathological morphometry in the lung tissue showed higher PMN sequestration, wider alveolar septa; and lower alveolar volume density (V(V)) and alveolar surface density (S(V)), showing significant difference (P<0.01). (2) When compared with the ALI group, the expression of PMN-CD18, MDA content, and W/D ratio were all lower in Tanshinone II A treatment group (P<0.05) with ameliorated coagulation abnormality (P<0.01). Histopathological morphometry in the lung tissue showed a decrease in the PMN sequestration and the width of alveolar septa (both P<0.01), and an increase in the V(V) and S(V) (P<0.05, P<0.01).</p><p><b>CONCLUSION</b>Tan II A plays a protective role in LPS-induced lung injury in rats through improving hypercoagulating state, decreasing PMN-CD18 expression and alleviating migration, reducing lipid peroxidation and alleviating pathological changes.</p>


Subject(s)
Animals , Female , Male , Rats , Blood Coagulation , CD18 Antigens , Abietanes , Drugs, Chinese Herbal , Pharmacology , Lipopolysaccharides , Toxicity , Lung , Pathology , Malondialdehyde , Phenanthrenes , Pharmacology , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL